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ABSTRACT

Background: Acute graft-versus-host disease (aGvHD) is a complex and often
multisystem disease that causes morbidity and mortality in 35% of patients receiving
allogeneic hematopoietic stem cell transplantation (AHSCT).

Objective: This study aimed to implement a Clinical Decision Support System
(CDSS) for predicting aGvHD following AHSCT on the transplantation day.

Material and Methods: In this developmental study, the data of 182 pa-
tients with 31 attributes, which referred to Taleghani Hospital Tehran, Iran during
20092017, were analyzed by machine learning (ML) algorithms which included
XGBClassifier, HistGradientBoostingClassifier, AdaBoostClassifier, and Random-
ForestClassifier. The criteria measurement used to evaluate these algorithms included
accuracy, sensitivity, and specificity. Using the machine learning developed model,

a CDSS was implemented. The performance of the CDSS was evaluated by Cohen’s
Kappa coefficient.

Results: Ofthe 31 included variables, albumin, uric acid, C-reactive protein, do-
nor age, platelet, lactate Dehydrogenase, and Hemoglobin were identified as the most
important predictors. The two algorithms XGBClassifier and HistGradientBoosting-
Classifier with an average accuracy of 90.70%, sensitivity of 92.5%, and specificity
of 89.13% were selected as the most appropriate ML models for predicting aGvHD.
The agreement between CDSS prediction and patient outcome was 92%.

Conclusion: ML methods can reliably predict the likelihood of aGvHD at the
time of transplantation. These methods can help us to limit the number of risk factors
to those that have significant effects on the outcome. However, their performance is
heavily dependent on selecting the appropriate methods and algorithms. The next
generations of CDSS may use more and more machine learning approaches.
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Introduction
cute graft-versus-host disease (aGvHD) is a complex and of-
ten multisystem disease that causes morbidity and mortality in
35%-50% of patients receiving allogeneic hematopoietic stem
cell transplantation (AHSCT) [1]. On the first 100 days after transplan-
tation, donor T cells invade the host tissue and lead to dysfunction of
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the skin, gastrointestinal tract, and liver [1-4].
Given that it occurs at the stage of severe tis-
sue damage, its diagnosis is late [5].

In recent years, biomarkers related to
aGvHD have been considered as a tool in pre-
dicting the occurrence [5]. But the multiplic-
ity of these biomarkers and the complexity of
the various factors, contributing to the disease
have made an accurate quick decision diffi-
cult. Besides, in previous studies [6-8]. The
analyses performed on these biomarkers was
univariate using classical statistical methods
[9-11].

Since the 1960s, medical informatics ex-
perts have become interested in using clinical
decision support systems (CDSS) to classify
patient outcomes, reduce health-care costs,
and alert physicians about the potential for
dangerous medication interactions, resulting
in the improvement of physicians’ diagnostic
process, and provide diagnostic suggestions,
and also increase safety and quality of patient
care [12-15].

CDSS is defined as “a computer system de-
signed to impact clinician decision-making
about individual patients at the point in time
that these decisions are made” [13]. CDSSs
are divided into two categories of knowledge-
based and non-knowledge-based [13, 14]. In
the knowledge-based type, the goal is to build
a system that can simulate human thinking.
These types of CDSSs use the knowledge as
a rule or set of if-then rules in which they are
specifically coded in clinical practice guide-
lines (CPG). Whereas, non-knowledge-based
CDSSs use machine learning (ML) algorithms
to extract knowledge [13].

Machine learning (ML) is a subset of artifi-
cial intelligence (AI) in which the algorithms,
executing the prediction process extract the
necessary knowledge from past experiences
and/or find patterns in data [16-18]. ML is any
process in which an algorithm is improved or
“trained” by performing repetition on a train-
ing dataset to perform a task, usually a classi-
fication or identification [16, 19]. The trained

algorithms can then be evaluated by measur-
ing its performance based on the test dataset
[17, 19, 20].

There are several learning methods in ML,
one of the most widely used and the popular
of which is supervised learning. The goal of
a supervised learning algorithm is to use the
dataset to produce a model, taking a feature
vector x as an input and outputting informa-
tion, resulting in deduction if the label for this
feature vector [20].

The two major types of supervised learning
are classification and regression. Examples of
classification are ensemble methods, K-near-
est neighbors, support vector machine, deci-
sion trees, random forest, neural networks and
so on. Regression examples are linear regres-
sion and logistic regression [17, 19-21].

The ensemble is an ML concept in which
the idea is to train multiple models using the
same learning algorithm [22]. Ensemble algo-
rithms are divided into two main types, includ-
ing boosting and bagging. Ensemble methods
include algorithms such as eXtreme Gradient
Boosting classifier (XGBClassifier), Ada-
Boost classifier (AdaBoostClassifier), Histo-
gram-based Gradient Boosting Classification
Tree (HistGradientBoostingClassifier), and
Random Forest classifier [20].

The XGBClassifier is a highly adaptable
algorithm, working in most classifications.
Boosting is a method, seeking to create a
strong classifier based on weak classifiers.
Weak and strong classification models men-
tion to the correlation of outputs and actual
class. By appending classifiers on top of each
other iteratively, the next classifier can modify
the errors of the previous one. This process is
recurred until the training data set is accurate-
ly predicted [23].

The HistGradientBoostingClassifier has sup-
port for missing values. During training, the
tree grower learns at each split point whether
samples with missing values should go to the
left or right child, based on the potential gain
[19].
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An AdaBoost classifier (AdaBoostClassi-
fier) is one of the most popular algorithms for
building robust classifiers with linear combi-
nations of member classifiers. The member
classifiers are chosen to minimize the errors in
each iteration during the training process [24].

RandomForestClassifier synthesizes several
randomized decision trees and gathers their
predictions by averaging. In settings where
the number of variables is much greater than
the number of observations, this method has
shown excellent performance [25].

Pre-occurrence prediction by these algo-
rithms helps physicians to identify high-risk
patients and reduce health care costs by per-
forming time-consuming treatment interven-
tions [26].

Previous studies have shown that neural
network algorithms, support vector machine,
naive bayes, K-nearest neighbors, regression,
decision trees, and ensemble methods have
been used to predict aGvHD [27]. Although in
recent years the decision trees and ensemble
methods have been given more attention for
predicting aGvHD, there is no evidence that
these algorithms are successfully used in the
clinical setting [28-30]. Therefore, this study
aimed to design, implement, and validate a
clinical decision support system using ensem-
ble methods to predict aGvHD following AH-
SCT on transplant day.

Material and Methods

Data Source, Study Roadmap, and
Tools

In a developmental study, 31 variables [27]
(which were classified into two groups: base-
line and biomarker), which could potentially
affect the transplantation outcome, were gath-
ered on the day of transplantation from 190 pa-
tients who received AHSCT in Taleghani Hos-
pital, Tehran, Iran, from 2009 to 2017. Then
the CDSS was designed and implemented
using Python programming language in four
stages as pre-processing, learning, evaluation,
and CDSS implementation as is shown in the
below roadmap diagram (Figure 1).

Pre-processing

Imputing missing value

In this phase, the raw data were imputed us-
ing the following two processes:

1- Records and variables with missing val-
ues (greater than 50%) were excluded from
the dataset.

2- The missing values of continuous and dis-
crete variables were replaced separately with
mean and mode in each class, respectively.

Under-sampling

Under-sampling methods normalize the dis-
tribution of all classes by decreasing the num-
ber of majority class records in the imbalanced

'
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Figure 1: Roadmap for building clinical decision support systems based on machine learning.

J Biomed Phys Eng 2021; 11(3)

/ 347



Cirruse Salehnasab, et al

dataset [31]. An imbalanced class distribution
will have one or more classes with few samples
(the minority classes) and one or more classes
with many samples (the majority classes). In
this study, the RandomUnderSampler method
was used to decrease the number of majority
class records [32]. RandomUnderSampler is a
fast and simple method to balance the patient’s
dataset by randomly choosing a subset of data
for the targeted classes.

Data Splitting

In this phase, patients’ datasets were divided
into training and testing sets with a ratio of
70% and 30%, respectively.

Feature Scaling

In this phase, the training and test data sets
were scaled separately using the normalizing
method (Equation 1) [32]. The numerical val-
ues of the data set are between zero and one.

1) Xnormalizcd - (X-X )/(X _Xmin)

Feature Selection

In this phase, the Boruta algorithm, which
is a type of wrapper method feature selection,
was used to select the most important predic-
tors of aGvHD prediction. This method, using
RandomForestClassifier algorithm, identifies

important features of the dataset as unbiased
and stable [33].

min max

Learning

Hyperparameters are parameters, governing
the learning process, but they are not the part
of the learning process. Besides, they have a
great impact on the performance and results
of modeling ML algorithms [34]. Adjustment
of these hyperparameters is considered as an
optimization problem and their search is usu-
ally done manually using methods such as
randomized parameter optimization with k-
fold cross-validation method (Randomized-
SearchCV) [19, 35]. In the present study, the
RandomizedSearchCV method was used to
optimize the hyperparameters of four ML al-
gorithms, including XGBClassifier, HistGra-
dientBoostingClassifier, AdaBoostClassifier,
and RandomForestClassifier.

Evaluation

After modeling the ML algorithms, their per-
formance was evaluated using the accuracy,
sensitivity, specificity, F-measure, and AUC
(area under the curve) criteria (Equations 2 to
5) [36].

TP+TN
2) Accuracy =
TP+TN +FP+ FN
TP
3 Sensitivity (TPR )= ———
) ly( ) TP+ FN
TN
4 Specificity(TNR )= ————
) pecifi ly( ) TN + FP
2xTP
5) F —measure= X
2xTP+ FP+FN

A ROC chart is defined by false positive rate
(FPR) and true positive rate (TPR) as x and y
axes, respectively, depicting relative trade-offs
between true positive (TP) and false-positive
(FP) [36].

Where TP is the number of actual patients,
predicted correctly to have aGvHD. TN is the
number of non-patients, predicted correctly
not to have aGvHD. False-positive (FP) is the
number of non-patients, predicted incorrectly
to have aGvHD, and false-negative (FN) is the
number of patients, predicted incorrectly not
to have aGvHD [36].

CDSS

After selecting the most appropriate ML
models, a CDSS was designed and imple-
mented using Python programming language
and MySQL database management system
(Figure 1 Part D).

Then performance of CDSS was evaluated
by calculating the agreement between CDSS
prediction and the actual patient outcome af-
ter 100 days of transplantation, using Cohen’s
Kappa coefficient and transplant data 30 pa-
tients, receiving AHSCT in 2018 [37].

Results

a. Patient Characteristics
Table 1 presents the most significant vari-
ables for predicting aGvHD.
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Table 1: The dataset variables and their descriptions.

Type Row Variable Description Role
1 Patient Gender Input

2 Donor Gender Input

3 Donor-Patient Gender Input

4 Patient Blood group Input

5 Donor Blood group Input

2 6 Delivery The process of giving birth for Donor. Input
E 7 Marital Status Input
S 8 Smoking Input
9 Blood group Compatibiiy Donor and recipient have the as:t?;idt?lgd group antigens and plasma Input

10 Donor recipient relationship The relation between donor andS lp:):trl]znt gender including Related and Input

" Patient Age Input

12 Donor Age Input

1 Prophylaxis Regimen Regimen use for the prevention of a specific disease. Input

Regimen 1-3: Myeloablative is an intensive conditioning regimen to destroy
2 Chemotherapy Regimen the bone marrow cells. Regimen 4: Reduced intensity conditioning that Input
uses less chemotherapy and radiation than the Regimen 1-3.

3 Diagnosis Input
4 Complete Remission Including: tests, physical exams; ;n;iozins show that all signs of cancer Input
5 Radiothrapypre Bon'e Marrow The treatment of disease with ionizing radiation. Input
Transplantation
White Blood Cells Input
Platelet count Input
5 lactate dehydrogenase (LDH) Input
E 9 cluster of differentiation 3 Input
g (CD3)
a 10 cluster of Ej(i:flf;asrj;tiation 34 The CD34 antigen identifies on a myeloid leukemia cell line. Input
1" mononuclear cell (MNC) Input
1 Diagnosis to Transplantation The time between disease diag;(:;itsa tz;\g: hematopoietic stem cell trans- Input
13 Patient Body mass index Input
14 Donor Body mass index Input
15 Hemoglobin Input
16 Creatinine Input
17 Uric Acid Input
18 Albumin Input
19 C-Reactive Protein (CRP) Input
Acut.e graft-versus-host Target
disease (aGvHD)

J Biomed Phys Eng 2021; 11(3) / 349
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b. Pre-processing

After discarding incomplete patient records,
the patient dataset was reduced to 182 patients
(71 case-patients diagnosed with aGvHD vs.
111 control patients who did not experience
aGvHD). As a result of under-sampling, the
final number of scaled (normalized) patient
records was 142 patients (71 cases vs. 71 con-
trols), of which 70% (99 patients) were select-
ed for the training dataset and 30% (43 cases)
for the testing dataset.

The results of feature selection showed that
of the 31 included variables, albumin, uric
acid, C-Reactive Protein, donor age, plate-
let, Lactate Dehydrogenase, and Hemoglobin
were identified as the seven most important
predictors of aGvHD (Table 2) of which, albu-
min had the highest importance.

c. Predictive performance

The results of tuning the hyperparameters of
ML algorithms are presented in Table 3.

The evaluation results of ML models based
on the test data set are shown in Figure 2 and
Table 4. Based on the evaluation criteria in-
cluding, accuracy, sensitivity, specificity, F-
measure, and area under the curve (AUC), the
two algorithms XGBClassifier (eXtreme Gra-
dient Boosting Classifier) and HistGradient-
BoostingClassifier had the best performance.
According to the mean of evaluation criteria,
the XGBClassifier algorithm with 90.82 and
the lowest number of false negative and false

Table 2: The most important predictors of
acute graft-versus-host disease

Feature Importance
Albumin 0.409
Uric Acid 0.151
C-Reactive Protein 0.148
Donor age 0.085
Platelet 0.081
Lactate Dehydrogenase 0.071
Hemoglobin 0.055

Table 3: Results of optimized hyperparam-
eters of machine learning algorithms

Best F-measure

Classifier o
"XGBClassifier 94
HistGradientBoosting- %0
Classifier
AdaBoostClassifier 90
RandomForestClassifier 95

“eXtreme Gradient Boosting classifier

positive had the best performance (Table 4).

d. CDSS

Using the machine learning developed the
model, a CDSS was designed and imple-
mented, which is accessible via the https://ag-
predss.ir/ (Figure 3). The agreement between

AUC Curve Classification Report

XGBClassifier
e

HistGradientBoostingClassifier

True posiive ate

AdaBoostClassifier

RandomForestClassifier

Figure 2: Results of classification report and
Area under the curve (AUC) curve of ma-
chine learning models.
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CDSS prediction and the actual outcome that
occurred within 100 days after AHSCT was
92%.

Discussion

In this study, we designed and implemented
the AGPRC (Acute GvHD Prediction Trans-
plant Day CDSS) for predicting the likelihood
of aGvHD on transplantation day. Considering
the most important aGvHD predictors and ML
classification models, in the following lines,
we have discussed some important aspects of
this study.

I. The most important predictors
for aGvHD
Biomarkers play a key role in predicting

aGvHD as they help oncologists to identify
patients who are at higher risk for aGvHD, and
to select appropriate pre and post transplanta-
tion care plans for them. In this study, seven
variables were identified as the most important
factors associated with aGvHD on the trans-
plantation day. These variables included albu-
min, uric acid, CRP, donor age, platelet, LDH,
and hemoglobin.

In our study, the relative importance of al-
bumin in predicting aGvHD was about 41%.
Similarly, previous studies have also empha-
sized on the importance of the albumin lev-
el for predicting aGvHD [38-40], and low
amounts of albumin alone and without depen-
dence on other predictors affect overall mor-
tality of aGvHD patients [41].

Table 4: Results of performance evaluation of machine learning models

Row Classifier Accuracy Sensitivity Specificity F-measure AUC  Mean
1 XGBClassifier 90.70 95.00 86.96 90.48 90.98 90.82
HistGradientBoost-
, N 90.70 90.00 91.30 90.00 90.65 90.53
ingClassifier
- Average 1 and 2 90.70 92.50 89.13 90.24 90.82 -
3 AdaBoostClassifier 86.05 75.00 95.65 83.33 85.33 85.07
RandomForest-
4 N 83.72 80.00 86.96 82.05 83.48 83.24
Classifier

AUC: Area under the curve, XGBClassifier: eXtreme Gradient Boosting classifier

. «

5 ‘Acg’te GVHD Prediction Transplant Day CDSS

WS Lo e

¥ \ 'r /4( /54 -
¥ €opyright® 2021. All rights reserved. Click here to send us an email. rf“ .
Py -3 3 FR . . Ll /]
em Cell Research Center, Shahigdigheshti University.of Medical Scie nlran. e ‘

Figure 3: Graphical user interface of the clinical decision support system.

J Biomed Phys Eng 2021; 11(3)

/ 351



Cirruse Salehnasab, et al

The second predictor for aGvHD is uric acid
with the importance of 15.1%. In previous
studies, this variable has been cited as a strong
immunological risk signal. Low levels of this
predictor, especially on the day of transplan-
tation, increase the likelihood of aGvHD [42,
43].

The third predictor for predicting aGvHD
is CRP with the importance of 14.8%. High
levels of this predictor in patients increase the
risk of aGvHD, especially grade II to 1V, as-
ymptomatic death, and decreased overall sur-
vival [44-48].

The fourth predictor for aGvHD is the donor
age with the importance of 8.5%. In studies
related to AHSCT, donor age is considered as
an important predictor [49], and one of the ap-
propriate predictors that can be achieved eas-
ily and without cost.

The fifth predictor for aGvHD is platelets
with the importance of 8.1%. Previous studies
have emphasized that to prevent the likelihood
of aGvHD in AHSCT patients, it is essential
to maintain platelet counts above 10,000 mm?®
[50].

The sixth predictor for aGvHD is LDH with
the importance of 7.1%. Studies have shown
that low levels of LDH and high levels of
serum cyclosporine reduce the likelihood of
aGvHD [51]. In some previous studies, this
variable has been presented as one of the im-
portant predictors [10, 52].

The seventh predictor for predicting aGvHD
i1s hemoglobin with the importance of 5.5%.
Previous studies have emphasized that to pre-
vent the likelihood of aGvHD in AHSCT pa-
tients, maintaining a hemoglobin level above
8 to 9 g/dL is essential. Therefore, red blood
cells and platelets are injected continuously in
these patients [50].

According to the literature review, each one
of previous studies has focused on the impor-
tance of a marker based on the diagnosis of
aGvHD. Thus, the impact of the combination
of these significant factors on aGvHD detec-
tion is reported for the first time in this study.

II. Selected machine learning mod-
els

After identifying the most important pre-
dictors, the algorithm modeling process was
performed using the optimization of their hy-
perparameters. Based on the evaluation crite-
ria of accuracy, sensitivity, specificity, AUC,
F-measure, and the average of these criteria,
XGBClassifier model and HistGradientBoost-
ingClassifier had the best performance.

In previous studies, ML algorithms have
been mainly used in laboratory settings, not in
clinical practice. In the present study, the se-
lected and tuned ML models were used as the
inference engine of a CDSS to predict aGvHD
in the transplantation unit of the target hospi-
tal.

In 2015, a study by Cocho et al, [53] aimed
at using different ML algorithms to diagnose
aGvHD by gene expression data, used support
vector machine (SVM), shrinkage discrimi-
nant analysis (SDA), K-nearest neighbors
(KNN) algorithms without tuning their hyper-
parameters. The reported sensitivity, specific-
ity and AUC were 100%, 92.9% and 99.5%
for SVM, 92.9%, 92.9% and 95.9% for SDA
and 92.9%, 92.9% and 92.9% for KNN, re-
spectively. The ML models presented in this
study had very good performance evaluation
criteria, but there are three main criticisms for
this study as follows: 1) this study aimed to
diagnose aGvHD only based on gene expres-
sion data. 2) These ML models have not been
tested in a clinical setting, and 3) the system
cannot predict aGvHD before the patient goes
through transplantation because the study was
designed in such way, measured after trans-
plantation.

In 2018, Arai et al, [28] conducted a study
entitled “Predicting aGvHD following AH-
SCT using an ML algorithm” using the
ADTree without the hyper-parameter optimi-
zation method. The reported AUC for grades
2-4 aGvHD was 61.6% and for grades 3-4
was 62.3%. This study aimed to develop ML
models to accurately predict grades 2 to 4 of
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aGvHD, However, the performance of their
models was poor. In contract, in our study,
all performance measures of the selected ML
models had values over 90%, which demon-
strates a much better overall performance than
Arai et al, study.

In 2018, Lee et al, [29] conducted a study
entitled as “Predicting the absolute risk of
aGvHD following AHSCT” using the en-
semble method without optimizing the hyper-
parameters of the employed algorithms. The
reported AUC was in the range of 61.3% to
64% for these ensemble models. Despite the
fact that in the present study, the models are
also of the ensemble type, because of the hy-
perparameter tuning, the performance was
much better compared to the study conducted
by Lee et al.

In 2020, Tang et al, [54] conducted a study
entitled “Predicting aGvHD using Machine
Learning and Longitudinal Vital Signs Data
from Electronic Health Records” using lo-
gistic regression without hyper-parameters
optimization methods. The reported AUC for
grades 2-4 aGvHD was 65.9%. This study,
like a few other studies [28, 29, 53], was per-
formed to diagnose aGvHD after transplanta-
tion. Compared to the ML models of the pres-
ent study, the model proposed in the study of
Tang et al, has a lower performance, and has
not been used in a clinical setting.

Comparing the performance evaluation
criteria of XGBClassifier and HistGradient-
BoostingClassifier with ML model presented
in previous studies [28, 29, 53, 54], it seems
that the use of these ML models in CDSS to
predict aGvHD in the process of modifying
the care plan of patients who received AHSCT
can be useful and effective. Thus, we designed
and developed a CDSS and applied it in the
transplantation unit of the target hospital to
predict aGvHD on the day of transplantation.

III. CDSS performance evaluation
In terms of developing aGvHD, there was
92% agreement between the CDSS predic-

tion outcome and the actual patient outcome
that was measured 100 days after the AHSCT
transplantation.

Given that the criteria of the average evalua-
tion of the ML models used in this CDSS were
91%, it seems that this CDSS had acceptable
performance.

Conclusion

According to the current results and pre-
vious research, it is obvious that training a
model based on the aggregation of the most
significant features achieves the better perfor-
mance in comparison with generating a model
concerning each important feature, separately.

In this study, seven variables were identified
as the most important factors associated with
aGvHD on the transplantation day. These vari-
ables included albumin, uric acid, CRP, donor
age, platelet, LDH, and hemoglobin. Ensem-
bled Machine learning methods can reliably
predict the likelihood of aGvHD at the time
of transplantation. These methods can help us
to limit the number of risk factors to those that
have the significant effects on the outcome.
However, their performance is heavily depen-
dent on selecting the appropriate methods and
algorithms. Future studies should focus on
determining the most appropriate aGvHD pre-
dictive models.
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